Polyptychon: A Hierarchically-constrained
Classified Dependencies Visualization

Donny T. Daniel*, Egon Wuchner*, Konstantin Sokolov*, Michael Stal*, Peter Liggesmeyer!
* Architecture Definition and Management, CT RTC SAD, Siemens AG, Munich, Germany
{donny—thomas .daniel, egon.wuchner, konstantin.sokolov.ext, michael. stal}@siemens .com
TAG Software Engineering: Dependability, TU Kaiserslautern, Kaiserslautern, Germany
liggesmeyer@cs.uni-kl.de

Abstract—Architects and developers are often tasked with
evaluating or maintaining unfamiliar software systems. Reverse
engineering tools help extract relationships between the system
parts as they exist instead of as documented. Though node-link
diagrams have a straightforward correspondence with the graph-
representable data generated, the scale and complexity of real-
world data sets prevent efficient comprehension.

This paper presents Polyptychon, an interactive node-link
visualization designed for incremental exploration of dependency
information. Given a hierarchical information space of software
artifacts, Polyptychon constrains the visible dependencies to be
related to the child nodes of a specified artifact node, called a
view root. It then classifies these siblings as levelized, tangled
and independent. It also includes context nodes, which are a
filtered set of nodes elsewhere in the hierarchy that are related
to the siblings. The context nodes are further grouped based on
a project-specific partition function.

The hierarchical constraints and partition function provide
means to control the number of nodes displayed, while the
dependency classification allows users to form a qualitative
impression of the dependency structure. We demonstrate with
examples from the Netty open source project. We conclude with
areas of future work, in particular, as a basis of evolutionary
dependency analysis.

I. INTRODUCTION

Architecture evaluations are periodically undertaken to en-
sure the sustainability of a system [1]. Developers assigned
to new projects are required to become productive as soon as
possible. A typical use case confronted in these scenarios is to
understand how the system is actually organized (as opposed to
how it is documented). Numerous dependency relations exist
between system parts [2] and there are various methods [3] to
extract them from a codebase. Visual representations of this
dependency information allow the user to get a better under-
standing of the state of a system in terms of its dependencies.

Node-link diagrams correspond well with the graph-
representable data type of dependency information [4]. How-
ever, once the dependency graph grows in size, it is very
difficult to maintain explorable representations that are use-
ful. Matrix-based representations (e.g. Dependency Structure
Matrix (DSM)) have better scalability characteristics when
representing large hierarchical dependency graphs [5], and
form the critical visual component of many software analysis
tools [5],[6]. However, DSMs have a learning curve and are
weak in path-finding operations [7].

The motivation for this work was the need of a familiar,
interactive visualization for the dependency information ag-
gregated by a software analysis platform in development. In
order to provide a good overview [4], we wanted to help users
get “oriented”, i.e., identify what are the top-level or bottom-
level parts. At the same time, the user should be given an
impression of how “good” the dependency structure is. The
number of nodes displayed had to be controlled to reduce
cognitive load, while not losing information of how an area
of interest is related to the rest of the system.

II. VISUALIZATION DESIGN

Polyptychon is designed for top-down, incremental explo-
ration of compound graphs [8]. The raw dependency infor-
mation at the source code level is recovered by the analysis
tool using the Understand' library. The tool then aggregates
the dependencies based on the directory structure, forming a
compound graph.

P 11D,

m
[e]
o
CONTEXT

Sk

‘L§ |
N

D, F

m
O
N
SIBLINGS

VIEW ROOT 3 (%

{F Cu
SIBLINGS

(@) (b)

CONTEXT

Fig. 1: Constrained, classified dependencies at a view root.(a) shows a
compound graph consisting of a hierarchy of directories, files and classes; along
with a dependency graph between the classes. (b) shows the aggregated depen-
dency model calculated when D, is specified as the view root. The calculation
constrains the sub-graph to only contain the sibling nodes, and directly related
files outside the view root. The sibling relations are classified as levelized (L) and
independent (1) in this example.

A. Hierarchical constraints

From the global compound graph, a data model is computed
on demand based on a node of interest, called a view root (by
default, the root of the hierarchy). The dependencies visualized

Uhttp://www.scitools.com/

©2014 1EEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

/ putter / src / main / java / io / netty / | buffer

vl all ¥/ dep.extends | dep.implements [¥! dep.imports [/ dep.calls

UPPER CONTEXT

buffer_test codec codec_test codec-hip codec-htip_test d de test codec-sacks codec-socks_test example
handler handler_test microbench test testsuite_test transport transport_test transport-native-epoll transport-xb transport-sctp transport-udt transport-udt_test
LEVELIZED PooledDirectByteBuf.java TANGLED INDEPENDENT
ByteBufinputStream.java DefaultByteBufHolder.java UnpooledByteBufAllocatorjava PoolChunkjava
T PooledByteBuf
D ocoledERERITINS L edUnsate BrectBydEutava N
ByteBufOutputStream.java PooledByteBufAllocator java
PooledHeapByteBuf java L] PoolChunkListjava Poclsiva
AbstractByteBufAllocator java UnpooledUnsafeDirectByteBuf.java d [
0 0 PoolSubpage java
e java SimpleLeakAwareByteBuf java
| O 0O FixedCompositeByteBuf.java
DuplicatedByteBuf java package-info.java
UnreleasableByteBuf,java [7 UnpooledHeapByteBufiava g o iintinva 0
UnpooledDirectByteBuf java oy o]
SwappedByteBuf java WrappedByteBuf java [IReadOnlyUnsafeDirectByteBut java 0 java
Abstractl el java i java
ByteBufUtiljava E =z N CompositeByteBuf.java
0 Unpooled.java
ReadOnlyByteBufferBuf java
By:esgjava y Ipcatorjava By java By java PoolThreadCache java
L1 L1 1 1

LOWER CONTEXT

comion

Fig. 2: Polyptychon visualization of the dependencies among the child nodes (siblings) of a directory in the Netty project.The key features are:
Node Classification: The partitions in the middle contain the siblings classified as levelizable, tangled and independent. Hierarchical constraints: The dependencies
outside this hierarchy location (context nodes) are laid out in the UPPER CONTEXT (incoming dependencies) and LOWER CONTEXT (outgoing dependencies)
partitions. Context partition function: The context nodes are grouped, via a project-specific ctxPartFunc (), by top-level project folders with separate code and test
groups per project (e.g. butfer_test, codec in the UPPER CONTEXT partition). Controls: The breadcrumb controls on the top-left indicate the current hierarchy
location. The top-right has controls showing the different kinds of dependencies involved, and can be used to filter the underlying relation type. The call relation between
files (dep.calls) is indicated as the relation causing tangles. Drill-down: Clicking on the underlined file, AbstractByteBuf.java, will lead to the visualization in Fig. 5.

are in terms of the child nodes of the view root (Fig. 1). A
sub-graph that consists of these siblings, along with directly
related context nodes (those outside the view root) is extracted.
Context nodes are filtered appropriate to the level, e.g. if the
siblings contain files and directories, the context nodes will
have the same types. Any links between the context nodes are
also filtered to reduce clutter.

B. Classification

Given a view root, we now have a scoped dependency
graph. We then perform additional classifications to aid the
user in getting oriented and obtaining qualitative insights.
To identify “potentially problematic” dependencies, we detect
the presence of strongly connected components (SCCs). In a
directed graph, an SCC is a sub-graph where each constituent
node is reachable from any other node. We classify such nodes
as tangled nodes.

The next classification is to isolate non-tangled nodes that
don’t depend on other sibling nodes, called independent nodes.
Note that they can have dependencies with context nodes.
If the independent and tangled nodes are removed from
the sibling set, the remaining nodes form an acyclic graph,
amenable to a levelization algorithm, e.g. by Lakos [9]. Hence,
these nodes are classified as levelized nodes. Our levelization
algorithm essentially performs Lakos in reverse. We assign
the top-level nodes (no incoming dependencies) as level 0,
and assign their dependencies increasing level numbers. The
additional step is to assign the maximum n value to all the
bottom nodes (no outgoing dependencies).

In addition to hierarchical constraints, the number of nodes
can also be controlled by a user-defined context partition
function, ctxPartFunc (). This is required since the number
of context nodes pulled into the data model can still be
large. ctxPartFunc () adds meta-nodes and meta-edges [8]
to the sub-graph that aggregate the dependencies of the nodes
included in the partition. The aggregated nodes and edges
are removed from the sub-graph. Fig. 2 shows an example
of project-specific grouping (see caption for details).

C. Fartitions and Composite Layout

Before performing node layout, we first demarcate exclusive
areas for each classification of nodes, namely Levelized,
Tangled, Independent and Context. In particular, there are two
areas used for Context: i) Lower Context, holding context
nodes depended on by the siblings and ii) Upper Context,
having the opposite relation.

The visual partitioning enables the user to get a quick
picture of the kinds of dependencies at the selected root node.
Each enclosure is visible only if the corresponding partition
is non-empty. Each partition can now follow its own layout
rules to aid in comprehension. The independent partitions do
not have any inherent ordering, so we use a force-directed
layout. The SCCs detected are also laid out similarly, but
the bounds for each are determined by a single-level treemap
subdivision of the tangled partition. The area of the treemap is
proportional to the SCC size. Convex hulls enclose each SCC
for better visual discrimination. For the levelized nodes, each
level is rendered in its own row. The context nodes also follow
a similar row layout. The row layouts try to fit the node labels

with an alternating (observe the top level in Fig. 2) or slanted
arrangement (Fig. 6).

The distinct sub-layouts are packed together to form a
composite layout of the graph relevant to the view root,
emulating a BorderLayout found in GUI toolkits like Java
Swing. Fig. 2 shows a typical visualization’> with all five
partitions.

D. Interactions

When a user hovers over a node (hover query), only directly
related nodes and edges retain their opacity, while the other
nodes are faded out. Incoming and outgoing links are empha-
sized with different colours for better visual discrimination
(Fig. 3 (b), Fig. 4). Clicking a node initiates a drill-down
operation, loading a new model with the node serving as
the view root. Navigating back up the hierarchy is made
possible by a breadcrumb control (Fig. 2). Details-on-demand
are provided when clicking on links (details of the nodes and
dependency types), and the convex hulls (list of cycles in the
SCC). The virtual hierarchy formed by ctxPartFunc () can
be expanded to incrementally reveal the elided nodes. The
user can switch the underlying relations to create different
classifications of the sibling set (described in Fig. 2). Zoom
and pan interactions are also supported.

III. CASE STUDY : NETTY

We implemented Polyptychon as a web-based visualization
using the d3? library. The dependency data is pulled on de-
mand from the analysis tool via a REST API. We now discuss
some visualizations generated from a revision of the Netty*
codebase, a high-performance networking library consisting
about 134,500 lines of Java code.

Fig. 3 (a) shows the root level of this project. The root of the
project has no tangles, indicating a good dependency structure.
We can also find a dependency pattern in the project where
a number of higher level directories depend on the common,
buffer and transport folders, emphasized by hovering over
the nodes (Fig. 3 (b)).

Fig. 2 shows an interesting location in the Netty project
hierarchy, in the buffer sub-project. The most immediately
grabbing feature is the presence of two large strongly con-
nected components. We see that they do not disturb the layout
of the parts of the dependency structure that are levelizable.
The dependency graph originally has 416 nodes and 863 links.
The custom context node grouping reduces it to 63 nodes
and 265 links. For large graphs, the edges are deliberately
de-emphasized with low opacity to reduce visual clutter.

Fig. 5 shows the result of drilling down on one of the
“problematic” nodes. Fig. 4 shows how important nodes can
be emphasized when interacting via hover queries. A more
complex view root is shown in Fig. 6, with 98 nodes and 458
links, summarized from an original extraction of 591 nodes
and 1843 links.

2The partitions together resemble a polyptch, a multi-paneled style of
painting. Our visualization gets its name from the German word for the same.

3D3: Data Driven Documents, http://d3js.org/

4Netty, https://github.com/netty/netty/

example

e
codeghitpt-

o=

(a) Default (b) On hover

Fig. 3: Visualization of Netty root level

Fig. 4: Highlights on hover emphasize dependency patterns. Incoming
dependencies (green) are observed from siblings as well as context nodes,
indicating that the highlighted class io.netty.buffer.ByteBuf is a critical
one. The view root is the same as Fig. 2

IV. RELATED WORK

Polyptychon can be characterized as an application-specific
graph drawing algorithm, using composable layouts [10].
Sugiyama-based [11] layouts break cycles in directed graphs
in order to get a layered layout. Dig-CoLa [12] presents a
constraint-based layout that is able to take the level relations
between nodes into account. Polyptychon removes cycle-
inducing nodes before level calculation via SCC detection.

Nested graphs visualizations in tools like SHriMP [13] and
Structure101 [6] allow incremental exploration of compound
graphs. However, navigating deep into the hierarchy often
increases the displayed graph area substantially, such that
the context information is lost. Polyptychon provides con-

UPPER CONTEXT

buffer codec_test codec-memcache

transport_test

buffer_test codec-http transport

Abslra$ylel!ul

Unpooled ¢
y DuplicatedByteBuf

TANGLED

SlicedByteBuf

LOWER CONTEXT
buffer common

Fig. 5: AbstractByteBuf.java as view root. This file is involved in an SCC
with its siblings (Fig. 2). When viewing the associated class (green node), we
notice a smaller SCC that gives a scoped list of classes for investigation. Note
that the other classes (grey nodes) are considered context nodes.

,?;2“ /// MB==c

Ve 3// // ///.3:./(}\4 i’ '// & Y

Fig. 6: Folder corresponding to the io.netty.channel package.
This example shows that even at a reduced scale, patterns regarding top and
bottom level nodes and SCCs can be distinguished. The levelized layout slants
the text-labels to save on the width of the sub-layout, at the expense of the height.

sistent partitions given a rendering area, but is dependent
on the number of nodes per view root and an appropriate
ctxPartFunc () to avoid over-crowded layouts.

Hierarchical Edge-Bundling [14] reveals areas of interest in
compound graphs by bundling dependency edges along the
hierarchy. Grouse [15] presents a steerable graph hierarchy
exploration tool that selects different layouts based on detected
topological features (e.g. trees, connected components). Bal-
loon Treemaps [16] combine circular treemaps and balloon
tree layouts to visualize hierarchical information flows in
social networks but do not address compound dependency
graphs.

V. FUTURE WORK

Polyptychon was developed using a viewpoint-driven ap-
proach, where we first specify the goal and concerns in an
architectural viewpoint [17]. Visualization tasks are then de-
rived from these concerns. Finally, the layouts and interactions
are designed to accomplish these tasks effectively. We plan
to conduct user studies to evaluate the effectiveness of the
Polyptychon representation for the tasks identified, especially
in comparison to other relevant visualizations.

Polyptychon currently does not support the display of met-
rics like lines of code or quality measures. Additional channels
like node size, decorations and patterns could be employed to
give more information to first-time code explorers.

We are also exploring the use of the Polyptychon represen-
tation as a way to make more effective use of dependency
evolution information. A time bar with player controls is
the main addition to the Polyptychon visualization (Fig. 7).
Comparing two revisions, we can determine the differences
and record them as “events”, simple ones being the addition
and removal of nodes and edges. However, the Polyptychon
model can additionally determine higher level events like
the addition and removal of tangles and context nodes. We
mark the events on the time bar so that the user is given
an impression of the amount of change in the inspected
revision range. Higher-level events can have stronger colours
to indicate the importance of the change detected, allowing
users to quickly focus on the most the important revisions.

LEVELIZED TANGLED

c e f
O O O
(1) —= | Diff

Fig. 7: Extending Polyptychon to an evolution view. The various revi-
sions are represented in a time-bar, with markers to denote changes. Significant
changes like introduction of tangles are highlighted.

REFERENCES

[1] P. Avgeriou, M. Stal, and R. Hilliard, “Architecture Sustainability,” IEEE
Software, vol. 30, no. 6, pp. 0040-44, 2013.

[2] T. B. C. Arias, P. van der Spek, and P. Avgeriou, “A practice-driven
systematic review of dependency analysis solutions,” Empirical Softw.
Eng., vol. 16, no. 5, pp. 544-586, 2011.

[3] S. Ducasse and D. Pollet, “Software Architecture Reconstruction: A
Process-Oriented Taxonomy,” IEEE Trans. Softw. Eng., vol. 35, no. 4,
pp. 573-591, 2009.

[4] B. Shneiderman, “The Eyes Have It: A Task by Data Type Taxonomy
for Information Visualizations,” in 71996. Proc. IEEE Symp. on Visual
Languages, 1996, pp. 336-343.

[5] N. Sangal, E. Jordan, V. Sinha, and D. Jackson, “Using Dependency
Models to Manage Complex Software Architecture,” in ACM Sigplan
Notices, vol. 40, no. 10. ACM, 2005, pp. 167-176.

[6] “Structure101, Headway Software,” http://structure101.com, 2014, [On-
line; accessed 25-May-2014].

[71 M. Ghoniem, J.-D. Fekete, and P. Castagliola, “On the readability of
graphs using node-link and matrix-based representations: a controlled
experiment and statistical analysis,” Information Visualization, vol. 4,
no. 2, pp. 114-135, 2005.

[8] T. Von Landesberger et al., “Visual Analysis of Large Graphs: State-of-
the-Art and Future Research Challenges,” in Computer graphics forum,
vol. 30, no. 6. Wiley Online Library, 2011, pp. 1719-1749.

[9] J. Lakos, Large-scale C++ software design. Addison-Wesley Profes-
sional, 1996, pp. 312-324.

[10] T. Pattison, R. Vernik, and M. Phillips, “Information Visualisation
using Composable Layouts and Visual Sets,” in Proc. 2001 Asia-
Pacific symposium on Information visualisation-Volume 9. Australian
Computer Society, Inc., 2001, pp. 1-10.

[11] K. Sugiyama, S. Tagawa, and M. Toda, “Methods for Visual Under-
standing of Hierarchical System Structures,” IEEE Trans. on Systems,
Man and Cybernetics, vol. 11, no. 2, pp. 109-125, 1981.

[12] T. Dwyer and Y. Koren, “Dig-CoLa: Directed Graph Layout through
Constrained Energy Minimization,” in [EEE Symp. on Information
Visualization, 2005, pp. 65-72.

[13] M. Storey, C. Best, and J. Michand, “SHriMP views: An interactive
environment for exploring Java programs,” in Proc. 9th Intl. Workshop
on Program Comprehension, 2001, pp. 111-112.

[14] D. Holten, “Hierarchical Edge Bundles: Visualization of Adjacency
Relations in Hierarchical Data,” IEEE Trans. on Visualization and
Computer Graphics, vol. 12, no. 5, pp. 741-748, 2006.

[15] D. Archambault, T. Munzner, and D. Auber, “Grouse: Feature-based,
steerable graph hierarchy exploration,” in Proc. 9th Joint Eurograph-
ics/IEEE VGTC conference on Visualization. Eurographics Association,
2007, pp. 67-74.

[16] F. Viégas et al., “Google+ Ripples: A Native Visualization of Infor-
mation Flow,” in Proc. 22nd Intl. Conference on World Wide Web.
Intl. World Wide Web Conferences Steering Committee, 2013, pp.
1389-1398.

[17] ISO, “ISO/IEC 42010 Systems and software engineering — Architecture
description,” 2011.

http://structure101.com

	Introduction
	Visualization Design
	Hierarchical constraints
	Classification
	Partitions and Composite Layout
	Interactions

	Case Study : Netty
	Related Work
	Future Work
	References

